This is why what happens today with COVID-19 could delay the Apple iPhone 16 Pro Max 5G

Apple orders 10,000 additional 5nm chips for this quarter
The process node is based on the ever-growing number of transistors that fit into a dense spot, such as a square mm. The more transistors that can be placed inside a chip, the more powerful and energy efficient it is. Back in the 1960s, Intel co-founder Gordon Moore noticed that the transistor density (again, the number of transistors that can squeeze into a square mm) doubles every year. In the 1970s, Moore updated his law, calling for the transistor density to double every other year.
So where are we now? Most chipsets used to power mobile handsets in 2019-2020 are made using the 7nm process including Apple’s A13 Bionic, the Snapdragon 865 Mobile Platform, and the Kirin 990 5G. 5nm chipsets will start rolling out this year and the 5G 2020 Apple iPhone 12 family, powered by the A14 Bionic, could be the first smartphones to be equipped with a 5nm chip. The Huawei Mate 40 series could follow. To illustrate what we are talking about, the A13 Bionic SoC contains 8.5 billion transistors while the A14 Bionic will have 15 billion transistors inside each chipset.
5nm will be the first process node that TSMC designed to use extreme ultraviolet lithography (EUV). The foundry’s N7 and N7P process nodes used immersion lithography and the N7+ used something similar. EUV saves time by using an ultraviolet beam to more precisely mark up a die more precisely. Since marking up a die indicates the placement of the transistors inside an integrated circuit, the more precisely this is done, the more transistors that can fit inside.
TSMC isn’t expected to start production of 3nm chips before 2022. Trial production will take place in TSMC’s Fab 18 where two construction phases completed were for 5nm production; the next two will be dedicated to 3nm production.